GMDH神经网络在雷电预警中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

2019年江西省气象局科研项目


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    利用江西南昌地区南昌县、小蓝经开区、塔城乡和小莲村等站点多个时间序列的大气电场和雷电数据,选取南昌地区2018—2020年56个雷电活动过程中共计224个时间序列大气电场和经小波函数sym5和阈值分析法Rigorous Sure变换的大气电场信号进行训练和测试,建立自组织数据处理的群方法GMDH(group method of data handling)神经网络模型并应用于雷电活动的预警。结果表明:30~60 min GMDH神经网络模型预测值和实测值相关系数(R)在07~085之间,经过小波变换处理后的大气电场数据预测准确率更高,预测值与实测值的相关系数接近于1,均方误差、均方根误差以及准则值(P)均可控制在5%以内;借助提前获取的大气电场预测数据,通过大气电场强度剧烈的脉冲变化可以预示着雷电活动的发生,有效地提高雷电预警的准确率和时效性。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

刘海兵,卢秋芳. GMDH神经网络在雷电预警中的应用[J].陕西气象,2023(5):74-79.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-14