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摘　要：基于２０１４—２０２３年ＧＰＭ双频测雨雷达ＤＰＲ资料，分析秦岭南北对流性和层云性降水垂

直结构特征。结果表明：（１）秦岭南北暴雨事件以对流性降水为主，对流云较层云更易产生强降

水。（２）对流性降水中雷达反射率因子随高度降低持续增大，特别在融化层和雨顶高度之间，粒子

通过碰冻过冷水和聚并过程持续增长，降水粒子半径显著增加，而层云性降水增长相对缓慢。对

流（层云）性降水的雨强与粒子半径（数量）的正相关关系更显著，与对流性降水中强烈的粒子碰并

增长过程有关（贡献率高达６３．５％～６５．８％），远高于层云降水（４０．７％～４８．４％），这得益于对

流性降水中丰富的水汽和剧烈的垂直运动。（３）区域差异上，对流性降水中秦岭以北粒子碰并增

长更强、半径更大，与其午后强对流频发特征一致，而秦岭以南多发夜间弱对流。而层云性降水中

秦岭以南湿润环境更利于粒子凝结生成，粒子数量更多，碰并增长过程亦更强。
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　　秦岭位于中国中部，阻挡了北方干冷空气南

下和南方暖湿空气北上，是我国南北气候的分界

线。独特的地理位置和气候特征使秦岭及其周边

地区降水的特征和发生机制差异巨大。秦岭以南

年平均降水量达１４００ｍｍ以上，而其以北地区

年均降水量不足１０００ｍｍ。从日变化上，秦岭以

南受四川盆地特殊地形引起的夜间山风的影响，

是我国夜雨特征最明显的地区；秦岭以北黄土高

原受热力影响，午后对流频繁［１３］。不同的热力与

动力过程会影响云中水汽与冰、水相粒子的相变

特征，从而在地面表现为降水落区与强度的差

异［４５］。对降水微物理垂直结构的研究，不仅能够

为理解秦岭南北降水差异提供新的视角，还能够

为数值模式中参数化方案的改进提供依据，提高

其预报能力［６］。

降水垂直结构信息可以通过如地基、机载雷

达和卫星遥感等方式获取，其中地基、机载雷达对

降水的观测在时空上受到的限制较多。星载雷达

弥补了地基和机载雷达观测在范围和频率上的不

足。由美国和日本合作的全球降水测量计划

（ｇｌｏｂａｌｐｒｅｃｉｐｉｔａｔｉｏｎｍｉｓｓｉｏｎ，ＧＰＭ）于２０１４年发

射了首个双频率降水雷达（ｄｕａｌｆｒｅｑｕｅｎｃｙｐｒｅ

ｃｉｐｉｔａｔｉｏｎｒａｄａｒ，ＤＰＲ）卫星，可以提供更准确的降

水垂直结构信息［７］。以往基于 ＧＰＭ－ＤＰＲ数据

的研究广泛探讨了特定天气系统的降水垂直结构

特征。例如，华南汛期对流性降水（层云性降水）

反射率因子快速增长区域主要发生在低层（亮带

层附近）［８］。四川特大暴雨的对流云中４～７ｋｍ

高度的雨滴碰并增长过程显著，而４ｋｍ以下雨

滴蒸发和破碎过程明显［９］。长江－淮河流域不同
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降水效率中微物理过程存在差异，降水效率高的

降水中，融化层以下的雨滴增长过程以碰并为主，

而在低降水效率的降水中，雨滴破裂是融化层以

下的主要过程［１０］。秦岭南北降水机制不同，其对

应的降水垂直结构有何差异，主要微物理过程等

问题都值得讨论。这类研究不仅有利于进一步了

解秦岭南北的降水差异，也为改进数值模式参数

化方案提供重要的参考依据。

１　数据和研究区域

ＧＰＭ－ＤＰＲ是全球第一台星载双频降水雷

达，由Ｋａ波段（３５．５ＧＨｚ）和Ｋｕ波段（１３．６ＧＨｚ）

降水雷达组成，可提供降水的三维结构。ＧＰＭ－

ＤＰＲ在其开发过程中经历了多次算法更新。本

文所用的ＧＰＭ－ＤＰＲ 资料为 Ｖ０７版本的ｌｅｖｅｌ２

双频联合反演产品，更新于２０２１年１２月。ＤＰＲ

算法版本从 Ｖ０６更新到 Ｖ０７在几个方面带来了

重大变化。关于产品格式，ＧＰＭ－ＤＰＲ现在使用

“ＦＳ”格式（ｆｕｌｌｓｃａｎ，全扫描格式），它均衡了 Ｋｕ

和 Ｋａ波段数据采集分辨率
［１１］。ＤＰＲ双频反演

产品的合理性已在诸多研究中得到验证，如 Ｖ０７

产品相比先前版本可以更好地捕捉极端降水［１２］，

Ｃａｎｎｏｎ等和 Ｄ’Ａｄｄｅｒｉｏ等
［１３１４］通过与地基雷达

交叉验证，证明了ＤＰＲ产品的可靠性。

ＧＰＭ－ＤＰＲ产品提供了详细的降水信息，包

括衰减校正的雷达反射率因子 （犣ｅ）、云中粒子分

布谱（ｄｒｏｐｓｉｚｅｄｉｓｔｒｉｂｕｔｉｏｎ，ＤＳＤ）、降水类型和温

度等。该数据使用双频比（ＤＦＲｍ）方法对降水类

型分类（详细参见：ｈｔｔｐｓ：／／ｇｐｍ．ｎａｓａ．ｇｏｖ／ｓｉｔｅｓ／

ｄｅｆａｕｌｔ／ｆｉｌｅｓ／２０２２－０６／ＡＴＢＤ＿ＤＰＲ＿Ｖ０７Ａ．ｐｄｆ）。降

水划分为三类，即对流性降水、层云性降水、其他

降水。其他降水包括对流性和层云性混合或者测

量误差引起的噪声等情况［１５１６］。因此，本文仅关

注对流性降水和层云性降水。

研究范围为秦岭及周边地区（２９°Ｎ～４０°Ｎ，

１０５°Ｅ～１１５°Ｅ），以３４°Ｎ为界将研究区域划分为

秦岭以南和以北两个区域［１］。秦岭及周边地区受

夏季风影响显著，夏季降水强度和频率最大，因此

利用ＧＰＭ－ＤＰＲＶ０７版本的ＦＳ扫描产品，统计

分析该区域２０１４—２０２３年夏季（６—８月）不同强

度的层云性和对流性降水的微物理特征。

２　结果分析

２．１　降水样本统计结果

根据王曙东等［１７］利用雨强对短时降水的划

分标准（表１），降水可分为５个等级，即小雨，中

雨，大雨，暴雨，大暴雨。表１给出了２０１４—２０２３

年６—８月ＧＰＭ－ＤＰＲ探测的夏季秦岭南北不同

等级降水的样本数。大雨及以下级别，秦岭南北

的层云性降水样本数均远远大于对流性降水；暴

雨及以上级别，对流性降水的样本数多于层云性

降水，表明对流云通常更易在该区域引发强度更

大的降水事件。此外，统计结果还显示，秦岭以南

弱对流占比高于秦岭以北，而强对流占比低于秦

岭以北，这一特征与秦岭以南的四川盆地夜间弱

对流频发，而秦岭以北午后强对流频发有关［１８］。

表１　２０１４—２０２３年６—８月ＧＰＭ－ＤＰＲ探测的秦岭南北对流性和层云性降水样本统计

降水强度等级

样本数／个（占比／％）

秦岭以南 秦岭以北

对流 层云 对流 层云

小雨（０．５≤犚＜２ｍｍ／ｈ） ４２８６１（２５） １２８８８１（７５） ２３６７４（１５） １３３２４１（８５）

中雨（２≤犚＜４ｍｍ／ｈ） １１９６１（２４） ３７４９８（７６） ９１６１（２０） ３６０７５（８０）

大雨（４≤犚＜８ｍｍ／ｈ） ８３５０（３２） １７７３０（６８） ７８１４（３５） １４６１５（６５）

暴雨（８≤犚＜２０ｍｍ／ｈ） ６３４３（５１） ６１３６（４９） ５３５６（５８） ３９１８（４２）

大暴雨（犚≥２０ｍｍ／ｈ） ４０９２（８０） １０４６（２０） ２２７３（８２） ４８８（１８）

　　　　　注：犚表示雨强。
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２．２　雷达反射率因子的垂直分布

降水的垂直结构可以反映降水系统的热动力

和微物理过程。为了解秦岭南北的层云性和对流

性降水特征，图１给出了对流性和层云性降水雷

达反射率因子的归一化等高频率分布图（ｎｏｒｍａｌ

ｉｚｅｄｃｏｎｔｏｕｒｅｄｆｒｅｑｕｅｎｃｙｂｙａｌｔｉｔｕｄｅｄｉａｇｒａｍ，

ＮＣＦＡＤ）。在对流性降水中，秦岭南北对流最高

均可以发展到１８ｋｍ左右，雷达反射率因子最大

均可达到６０ｄＢＺ（图１ａ和图１ｂ）。雷达反射率因

子中心集中在１～４ｋｍ之间，一个中心为１８～

２０ｄＢＺ，另一个为３０～４０ｄＢＺ，前者的频次比后

者的高，表明两个地区的对流以浅对流为主，秦岭

以南浅对流出现的频次要比秦岭以北高。融化层

高度在５ｋｍ左右，此高度以上以冰水混合相为

主，以下以液态为主。秦岭南北对流性降水雨顶

高度在７～８ｋｍ附近，温度在－１２℃左右，该特

征与中纬度地区对流性降水相似［１９］，此高度以上

以冰（雪）相为主，以下为冰水混合相为主；相比秦

岭以南，秦岭以北的雨顶高度更高一些，反映了秦

岭以北对流略强于秦岭以南。秦岭南北层云性降

水的垂直结构（图１ｃ和图１ｄ）较为接近，顶高可

达１６ｋｍ，雷达反射率因子中心集中在１８～

３５ｄＢＺ，高度在３ｋｍ 左右。融化层高度也在

５ｋｍ左右，与降水类型关系不大。在融化层高度

（０℃层）以下都存在融化层亮带。层云性降水冰

相层的底高在８ｋｍ附近。

黑色虚线表示０℃等温线，黑色实线表示雨顶高度。

图１　秦岭以南（ａ，ｃ）和以北（ｂ，ｄ）对流性（ａ，ｂ）和层云性（ｃ，ｄ）

降水雷达反射率因子（犣ｅ）的归一化等高频率垂直分布

　　从秦岭南北不同强度对流性和层云性降水雷

达反射率因子垂直结构（图２）可以看出，雷达反

射率因子随高度降低不断增大，在融化层附近反

射率因子增加明显，地面降水强度的增加与雷达

反射率因子的同步增加相对应。不同量级降水反

射率因子的差别在融化层以下比在冻结层以上更

大，这与低层大气含水量、温度的变化有关。对于

对流性降水，从云顶到冰水混合层，冷云过程发展

充分，降水粒子通过碰冻过冷水和聚并不断增长，

反射率因子不断增加（图２ａ和２ｂ），进入融化层
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后融化成雨滴，反射率因子快速增加。小雨过程，

在冻结层以下反射率因子随高度降低而减小，说

明存在蒸发过程。相比较而言，秦岭以北不同等

级对流性降水的反射率因子要比秦岭以南大，表

明其降水粒子偏大，强度偏强。和近地面降水观

测结果一致［１８］。对于层云性降水（图２ｃ和２ｄ），

冷云过程没有充分发展，在冰水混合层的中上部

（９～１１ｋｍ），降水粒子基本没有增长，从９ｋｍ往

下到融化层，降水粒子逐渐增长，反射率因子也逐

渐增加，进入融化层后融化成雨滴，反射率因子也

快速增加。比较不同等级的层云性降水反射率因

子表明，秦岭南北层云性降水雨强相近。

灰色实线表示０℃等温线，黑色实线表示雨顶高度。

图２　秦岭以南（ａ，ｃ）和以北（ｂ，ｄ）不同强度对流性（ａ，ｂ）和层云性（ｃ，ｄ）

降水雷达反射率因子廓线

２．３　粒子半径和数浓度的垂直分布

水凝物粒子谱（ＤＳＤ）反映降水的微观特征，

其中粒子半径（犇ｍ）和粒子数浓度（犖ｗ）是 ＤＳＤ

的两个重要参数，对于理解降水微物理过程至关

重要。图３给出了秦岭南北对流性和层云性降水

犇ｍ 和犖ｗ 的ＮＣＦＡＤ。对于对流云，上升运动越

强，低层水汽越容易被抬升凝结，形成大量半径较

小的水凝物［２０］。两个地区对流性降水的粒子谱

处于０．７～３．１ｍｍ 之间，但中心集中在０．８～

１．０ｍｍ之间（图３ａ和图３ｂ），表征了以弱对流

为主的降水粒子分布在融化层以下的高度，这类

大小的对流性降水在秦岭以南出现的频率比秦岭

以北高。秦岭以北存在一个犇ｍ 为３．０ｍｍ频率

为１０％以上的强降水。层云性降水的粒子谱要

比对流性降水的粒子谱窄很多（图３ｃ和图３ｄ），

处于０．８～２．１ｍｍ 之间，主要集中在１．０～

１．３ｍｍ之间，从融化层以上贯穿到融化层底部，

此类层云性降水的出现频率秦岭以北比秦岭以

南高。

两个地区对流性降水粒子数主要集中在３０～

４０ｍｍ－１ｍ－３之间，呈双峰分布（图３ｅ和图３ｆ），

第一峰值在 ３７ ｍｍ－１ｍ－３附近，第二峰值在

３３ｍｍ－１ｍ－３附近。冻结层以上的粒子数浓度第

二峰值在秦岭以北比秦岭以南伸展的高度更高、
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范围更大，而冻结层以下数量相差较小，说明秦岭

以北对流更强，冷云过程更活跃，粒子充分碰并增

长，导致冰相粒子数浓度和半径增加，而液相水凝

物粒子数量减少，半径增加。层云性降水的粒子

数浓度分布主要集中在３２～３６ｍｍ
－１ｍ－３之间

（图３ｇ和图３ｈ），其谱宽较对流性降水窄。秦岭

以北粒子分布谱宽比秦岭以南稍窄，但出现频次

要高。

黑色虚线表示０℃等温线，黑色实线表示雨顶高度。

图３　秦岭以南（ａ，ｃ，ｅ，ｇ）和以北（ｂ，ｄ，ｆ，ｈ）对流性（ａ，ｂ，ｅ，ｆ）和层云性（ｃ，ｄ，ｇ，ｈ）降水的粒子半径

（犇ｍ，ａ～ｄ）和粒子数浓度（犖ｗ，ｅ～ｈ）的ＮＣＦＡＤ图

　　图４给出了秦岭南北不同强度降水的犇ｍ 和犖ｗ

廓线。除小雨外，对流性和层云性降水犇ｍ（图４ａ～

图４ｄ）在融化层和雨顶高度之间增加明显，意味

着在冰水混合层降水粒子半径通过碰冻过冷水和

聚并不断增长。对流性降水中雨强和粒子半径的

正相关关系更显著（图４ａ和图４ｂ），即对流性降

水越强，水凝物粒子半径越大。对流性小雨从高

层开始降水粒子不断减小，到融化层高度附近减

小得更为明显，表明对流性小雨下落过程中存在

明显的蒸发现象。对流性大暴雨，降水粒子在高

层比其他雨强的粒子都小，这是由于强上升气流

把云中降水粒子带到高层所致。此类降水粒子通

过冷云过程不断增长，到融化层高度附近融化形

成大的雨滴，粒径增加也更为明显。大雨到暴雨

雨强的降水粒子在秦岭南北各高度上有一定差

异，秦岭以南冰水混合层以上 犇ｍ 主要集中在

１．５ｍｍ左右，而秦岭以北在１．７ｍｍ左右，融化

层到近地面的犇ｍ 也整体偏大，降水强度较大。

对于层云降水（图４ｃ和图４ｄ），融化层高度上下

犇ｍ 变化不大，粒子增长不明显，说明层云性强降

水的粒子大小增长缓慢，不是通过形成更大的降

水粒子，而是通过更多降水粒子的聚合而产生降

水，与华南和西南层云降水特点相似［８，２１］。

从图４ｅ～图４ｈ可以看出，对流性和层云性

降水粒子的犖ｗ 随高度降低而增加，此基本特征

与以往研究一致［８，２１］，可能原因是随着高度降低，

空气更加湿润，有利于降水粒子凝结，数浓度增

加。与犇ｍ 不同，对流性降水粒子 犖ｗ 与雨强不

成正比（图４ｅ和图４ｆ）。对流性小雨时，降水粒子

数量较多，但是半径较小，中雨、大雨乃至暴雨的

降水粒子数量比小雨的要少，表明对流性降水强

度与水凝物半径的关系更紧密。对于层云性降

水，雨强与犖ｗ 基本成正比（图４ｇ和图４ｈ），说明

层云性降水雨强与数浓度的关系更密切。秦岭以

北融化层以下水凝物数量比秦岭以南偏少，与该

地区层云性降水粒子增长所需时间较长、云中可

凝结水量偏少有关。
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灰色实线表示０℃等温线，黑色实线表示雨顶高度。

图４　秦岭以南（ａ，ｃ，ｅ，ｇ）和以北（ｂ，ｄ，ｆ，ｈ）不同强度对流性（ａ，ｂ，ｅ，ｆ）和层云性（ｃ，ｄ，ｇ，ｈ）降水的粒子

半径（犇ｍ，ａ～ｄ）和粒子数浓度（犖ｗ，ｅ～ｈ）廓线

２．４　暖雨物理过程

通过分析近地面不同高度上的粒子半径随雷

达反射率因子的变化，能够更好地了解暖雨碰并

的物理过程［２０２２］。选择１ｋｍ和３ｋｍ的粒子半

径和雷达反射率因子的差异（Δ犣ｅ＝犣ｅ１ｋｍ－犣ｅ３ｋｍ；

Δ犇ｍ＝犇ｍ１ｋｍ－犇ｍ３ｋｍ）进行分析，Δ犇ｍ 随Δ犣ｅ变化

分为四个象限。当Δ犣ｅ＞０和Δ犇ｍ＞０（第一象

限），表示雨滴通过碰并过程增长；当Δ犣ｅ＜０和

Δ犇ｍ＞０时（第二象限），主要的微物理过程是降

雨粒子的蒸发和分选；当Δ犣ｅ＜０和Δ犇ｍ＜０（第

三象限），较大的雨滴会破碎成较小的雨滴；当

Δ犣ｅ＞０和Δ犇ｍ＜０（第四象限），碰并和破碎过程

处于平衡。图５给出了秦岭南北对流性和层云性

降水中Δ犇ｍ 与Δ犣ｅ的概率分布。碰并过程在对

流性降水中的贡献明显更大，而在层云性降水中

破碎过程占主导地位。在秦岭以南（以北）地区，

对流 性 降 水 中 的 碰 并 过 程 占 比 为 ６３．５％

（６５．８％），破碎过程占２１．１％（２０．１％）；层云性

降水中的碰并和破碎比例约为４８．８％（４０．７％）

和３９．１％（４６．６％）。丰富的水汽和强烈的大气

运动有利于水凝物的碰并，对流性降水的碰并过

程强于层云降水［２３］。在层云性降水中，更湿润的

秦岭以南地区降水的碰并要强于秦岭以北地区。

３　结论与讨论

利用２０１４—２０２３年夏季的ＧＰＭ－ＤＰＲ观测

资料，分析了秦岭地区对流性与层云性降水的雷

达反射率因子、降水粒子特征的垂直分布，讨论了

秦岭南北不同强度降水垂直结构的差异，并分析

了暖雨降水的微物理过程，得到主要结论如下。

（１）从降水样本统计来看，秦岭南北大雨及以

下级别，层云性降水的样本数远大于对流性降水；

暴雨及以上级别，对流性降水的样本数多于层云

性降水，对流云通常更易在该区域引发强度更大

的降水事件。

（２）秦岭南北对流性降水的雷达反射率因子

随高度降低不断增大，降水粒子半径在融化层和

雨顶高度之间增加明显，降水粒子数浓度随高度

降低持续增加，表明降水粒子半径在冰水混合层

通过碰冻过冷水和聚并不断增长。相比对流性降

水，层云性降水粒子增长缓慢。因此，对流性降水

中雨强和粒子半径的正相关关系更显著，而层云

性降水雨强和粒子数浓度正相关关系更显著，这

与有丰富水汽和强烈垂直运动的对流性降水中粒

子碰并增长过程（６３．５～６５．８％）强于层云性降水

（４０．７～４８．４％）有关。

（３）在对流性降水中，秦岭以北的粒子碰并增

长过程强于秦岭以南，对应粒子半径秦岭以北偏

大，与秦岭以南的四川盆地夜间弱对流频发，而秦

岭以北午后强对流频发有关。层云性降水中，更
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图５　秦岭以南（ａ，ｃ）和以北（ｂ，ｄ）对流性（ａ，ｂ）和层云性（ｃ，ｄ）降水的

近地面Δ犇ｍ 和Δ犣ｅ的二维概率分布

湿润的秦岭以南地区更容易凝结形成降水粒子，

降水粒子数量更多，碰并增长过程也强于秦岭以

北地区。

本文利用ＧＰＭ双频降水雷达资料分析了秦

岭南北不同强度的对流性和层云性降水，初步获

得了不同热动力条件下降水垂直结构的总体特

征。但目前只讨论了雷达反射率因子、降水粒子

ＤＳＤ等，下一步工作将尝试加入更多物理量，并

选取多个典型降水个例进行深入分析，以进一步

丰富对降水机制与降水垂直结构的认识。
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